Simulated bidirectional texture functions with silhouette details
نویسندگان
چکیده
The representation of material appearance requires an understanding of the underlying structures of real surfaces, light-material interaction, and human visual system. The Bidirectional Texture Function (BTF) describes real-world materials as a spatial variation of reflectance, which depends on view and light directions. Real BTFs integrate all optical phenomena occurring in a complex material, such as self-occlusions, interreflections, subsurface scattering, etc., independently of the mesoscopic surface geometry. In this paper, we revisit BTF simulation to improve the modeling of surface appearance. In the recent years, computer graphics has achieved very good levels of image realism on geometrical appearance of 3D scenes. It is therefore logical to think that using this technology to simulate visual effects at the level of the mesoscopic geometry should provide even more realistic simulated BTFs. Our ultimate goal here is thus to produce material appearance as rich and as similar as those in reality, but relying more on the intuition and skills of artists, and on the rendering capacity of today’s computer graphics. We have designed a virtual parallel-projection / directional incident illumination framework that exploits rendering coherency in order to produce, in reasonable rendering times and with good compression ratios, BTFs of complex mesoscopic geometry, and this, even at grazing angles. Our current framework can simulate efficiently local interreflections effects within mesoscopic structures, as well as effects due to transparency, silhouettes, and surface curvatures. Our general simulation framework should also prove extensible to several other visual phenomena.
منابع مشابه
Memory Efficient Billboard Clouds for BTF Textured Objects
Efficiently rendering highly structured models distant from the viewer constitutes a difficult task since the geometric complexity has to be reduced extremely while simultaneously preserving the overall visual quality. Recently, billboard clouds have been introduced as an new solution to this problem. They achieve acceptable performance by coarsely approximating the geometry of a model while st...
متن کاملDecorating Surfaces with Bidirectional Texture Functions
We present a system for decorating arbitrary surfaces with bidirectional texture functions (BTF). Our system generates BTFs in two steps. First, we automatically synthesize a BTF over the target surface from a given BTF sample. Then we let the user interactively paint BTF patches onto the surface, such that the painted patches seamlessly integrate with the background patterns. Our system is bas...
متن کاملProcedural Editing of Bidirectional Texture Functions
Measured material representations like Bidirectional Texture Functions or Reflectance Fields offer very realistic appearance but the user is currently not capable of changing this appearance in an effective and intuitive way. Such editing operations would require a low-dimensional but expressive model for appearance that exposes only a small set of intuitively editable parameters (1D-sliders, 2...
متن کاملReal-Time Visualization of a Sparse Parametric Mixture Model for BTF Rendering
Bidirectional Texture Functions (BTF) allow high quality visualization of real world materials exhibiting complex appearance and details that can not be faithfully represented using simpler analytical or parametric representations. Accurate representations of such materials require huge amounts of data, hindering real time rendering. BTFs compress the raw original data, constituting a compromis...
متن کاملAcquisition, Compression, and Synthesis of Bidirectional Texture Functions
Real world surfaces such as tree bark, moss, sponge, and fur often have complicated geometry that leads to effects such as self-shadowing, masking, specularity, and interreflection as the lighting or viewpoint in a scene changes. We use image based techniques to analyze and represent bidirectional texture functions, or BTFs, with correct geometric and lighting effects. A basis for the apparent ...
متن کامل